Offline part
OFFLINE PART (SVD/POD/Greedy/rSVD…)
Script by Elise Grosjean (elise.grosjean@ensta-paris.fr)
import sys
!{sys.executable} -m pip install numpy
!{sys.executable} -m pip install matplotlib
!{sys.executable} -m pip install scikit-fem
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m A new release of pip is available: [0m[31;49m24.1.1[0m[39;49m -> [0m[32;49m25.0.1[0m
[1m[[0m[34;49mnotice[0m[1;39;49m][0m[39;49m To update, run: [0m[32;49mpython3.11 -m pip install --upgrade pip[0m
Let us consider a parameterized problem we want to solve for different parameter values in a set $\mathcal{G}$.
In general, Reduced Basis Methods (RBM) are decomposed in two stages:
- one offline that generates a smaller subspace $X_h^N$ of dimension $N$,
- and one online that find an approximation for a new parameter $\mu \in \mathcal{G}$ onto that subspace.
The offline stage is usually very costly but only executed once. In what follows, we review different algorithms that we can use to compute a reduced basis of $X_h^N$ and compare their computational costs.
# import packages
import skfem # for Finite Element Method
import numpy as np
import matplotlib.pyplot as plt
from sklearn.utils.extmath import randomized_svd
import time
1) The 2D-driven cavity problem:
We are going to use in this example the famous 2D-driven cavity problem with the Finite Element Method (FEM), which consists in solving on a unit square (denoted $\Omega$) the following equations: \begin{align} &-\nu \Delta u + (u \cdot \nabla) u + \nabla p =0, \textrm{ in } \Omega,\ & \nabla. u=0, \textrm{ in } \Omega,\ & (u_1,u_2)=(1,0), \textrm{ on } \Omega_{up}:=\partial \Omega \cap {y=1},\ & (u_1,u_2)=(0,0), \textrm{ on } \partial \Omega \backslash \Omega_{up}, \end{align} where $u=(u_1,u_2) \in V:=H^1_{d,0}(\Omega)^2=\{u \in H^1(\Omega)^2, \gamma_{\partial \Omega \backslash \Omega_{up}} u=0, \ \gamma_{up} u =(1,0) \}$ ($\gamma$ stands for the trace operator) represents the velocity of the incompressible fluid, $ p \in L^2(\Omega)$ its pressure, and $\nu=\frac{1}{Re}$ where $Re$ is the Reynolds parameter. Here, the Reynolds number is our parameter of interest ($\mu=Re$). For the nonlinearity we adopt a fixed-point iteration scheme, and after multiplying by test functions $q$ and $v$ (resp. for pressure and velocity), which in variational form reads: \begin{equation} \nu (\nabla uk, \nabla v) + ((u{k-1} \cdot \nabla) uk,v) - (pk, \nabla \cdot v) - (q, \nabla \cdot uk) + 10{-10} (p^k, q) =0, \textrm{in } \Omega, \end{equation} where $u^{k-1}$ is the previous step solution, and we iterate until a threshold is reached (until $\|u^{k}-u^{k-1}\| < \varepsilon $). Here, with the term $ 10^{-10} (p^k, q) $, we impose the average of the pressure $\int_{\Omega} p^k $ to be equal to $0$. For more details on how we derive this formulation, visit the link : https://github.com/grosjean1/navierStokes (FEM.pdf).
We employ Taylor-Hood elements to get a proper solution (e.g. P2-P1 for the tuple velocity-pressure) and obtain the system $\mathbf{K} \mathbf{x} =\mathbf{f}$ to solve where $\mathbf{K}= \begin{pmatrix} \mathbf{A} & -\mathbf{B}^T\\ -\mathbf{B} & 10^{-10} \mathbf{C} \end{pmatrix}$, $\mathbf{x}$ stands for the tuple velocity-pressure $(u_1^k,u_2^k,p^k)$, and where the assembled matrix $\mathbf{A}$ corresponds to the bilinear part $ \nu (\nabla u^k, \nabla v) + ((u^{k-1} \cdot \nabla) u^k),v) $, the matrix $ B$ to the bilinear part $( p^k ,\nabla \cdot v)$ and $\mathbf{C}$ is the mass matrix applied to the pressure variable ($(\cdot,\cdot)$ represents either the $L^2$ inner-product onto the velocity space or onto the pressure space).
The dirichlet boundary conditions are imposed with a penalization method, called with scikit-FEM by the line:
solve(*condense(K,f, x=uvp, D=D)),
where x=uvp gives the values at the boundaries of the velocity and D refers to the boundary decomposition.
# First we define a mesh for the unit square
mesh= skfem.MeshTri().refined(5).with_boundaries(
{
"left": lambda x: x[0] == 0,
"right": lambda x: x[0] == 1,
"down": lambda x: x[1] == 0,
"up": lambda x: x[1] == 1,
}
)
print(mesh)
mesh
<skfem MeshTri1 object>
Number of elements: 2048
Number of vertices: 1089
Number of nodes: 1089
Named boundaries [# facets]: left [32], bottom [32], right [32], top [32], down [32], up [32]
"""First step."""
# Assembling matrices
from skfem.assembly import BilinearForm, LinearForm
from skfem.helpers import grad, dot,div,ddot
@BilinearForm
def laplace(u, v, _):
print("gradula",np.shape(grad(u)))
return dot(grad(u), grad(v))
@BilinearForm
def vector_laplace(u, v, w):
# same as laplace but for u,v vectors
return w.nu*ddot(grad(u), grad(v))
@BilinearForm
def mass(u, v, _):
return u * v
@BilinearForm
def divu(u, v, w):
return div(u) * v
divergence = divu
#z=w.up*u.grad[0] + w.up * u.grad[1] #(u^(k-1). grad u^k). v
@BilinearForm
def nonlinearterm(u, v, w):
up_x, up_y = w.up
v_x,v_y=v[0],v[1]
gradu=grad(u)
gradxu_x=gradu[0,0]
gradxu_y=gradu[0,1]
gradyu_x=gradu[1,0]
gradyu_y=gradu[1,1]
return (up_x*gradxu_x+up_y*gradxu_y)*v_x + (up_x*gradyu_x+up_y*gradyu_y)*v_y
In the 2D-driven cavity problem, the parameter of interest is the Reynolds number. In the code below, the function SolveCavityProblem(Re,Mesh) takes as parameters the Reynolds number and a mesh, and returns the associated solution (velocity-pressure).
""" Finally we solve the problem """
from skfem import *
# Compute solution of the 2d-driven cavity problem
element = {'u': ElementVector(ElementTriP2()),
'p': ElementTriP1()} #[u,v,p]= velocity-pressure with Taylor-Hood P2-P1 FEM elements
def SolveCavityProblem(Re,Mesh):
# Re is the reynolds parameter #
Nu=1./Re
print('Parameter nu:',Nu)
basis = {variable: Basis(Mesh, e, intorder=4)
for variable, e in element.items()} # FEM space
up=basis['u'].zeros() #initialization for non-linear term previous solution
B =divu.assemble( basis['u'], basis['p']) # B.T=p*div(v) and B=q *div(u) with q=pressure test function
C = mass.assemble(basis['p'],basis['p'] ) # 1^-10 * p*q impose pressure average equal to 0.
A1 =vector_laplace.assemble(basis['u'],nu=Nu) # nu* grad(u) * grad(v) with u=[u1,u2] and v is test function v=[v1,v2]
#A2=nonlinearterm.assemble(basis['u'],up=basis['u'].interpolate(up)) #(u^(k-1). grad u^k). v
# global matrix Stokes
K = bmat([[A1, -B.T],
[-B, 1e-10 * C]], 'csr')
def profil_up(x):
"""return u=(0,1) at the up boundary and (0,0) otherwise """
return np.stack([x[1]==1, np.zeros_like(x[0])])
up_basis = FacetBasis(Mesh, element['u'], facets=Mesh.boundaries['up'])
all_basis = FacetBasis(Mesh, element['u'])
uvp_boundary = np.hstack((
all_basis.project(profil_up), # can be replaced by all_basis.project(profil_up), will be 0 by default for the other boundaries
basis['p'].zeros(),
))
D = basis['u'].get_dofs(['up', 'down', 'right','left']) # since we put D on basis['u'], there will be no penalization on pressure
f = np.concatenate([basis['u'].zeros(),basis['p'].zeros()]) # =0
#######################
### SOLVING PROBLEM ###
#######################
uvp = solve(*condense(K,f, x=uvp_boundary, D=D))
velocity, pressure = np.split(uvp, K.blocks)
for i in range(15): #fixed-point iterations
up=velocity.copy() # updating velocity
A2=nonlinearterm.assemble(basis['u'],up=basis['u'].interpolate(up))
# global matrix assembling update
K = bmat([[A1+A2, -B.T],
[-B, 1e-10 * C]], 'csr')
uvp = solve(*condense(K,f, x=uvp_boundary, D=D))
velocity, pressure = np.split(uvp, K.blocks)
return velocity,pressure
""" We may visualize the solutions """
from skfem.visuals.matplotlib import plot, draw, savefig
velocity,pressure=SolveCavityProblem(150,mesh)
def visualize_pressure(Mesh,Pressure):
## Function that allows us to visualize the pressure
#from skfem.visuals.matplotlib import plot
return plot(Mesh, Pressure, shading='gouraud', colorbar=True)
visualize_pressure(mesh,pressure).show()
def visualize_velocity(Mesh,Velocity):
## Function that allows us to visualize the velocity
fig, ax = plt.subplots()
# Calculate the magnitude of velocity
basis = {variable: Basis(Mesh, e, intorder=4)
for variable, e in element.items()} # FEM space
velocity1 = Velocity[basis['u'].nodal_dofs].copy()
magnitude = np.sqrt(velocity1[0]**2 + velocity1[1]**2)
# Display the velocity fields with colors for magnitude
quiver = ax.quiver(*mesh.p, *velocity1, magnitude, angles='xy', cmap='jet')
# colorbar
cbar = plt.colorbar(quiver, ax=ax)
# Limits of axis for the mesh
ax.set_xlim([Mesh.p[0].min(), Mesh.p[0].max()])
ax.set_ylim([Mesh.p[1].min(), Mesh.p[1].max()])
cbar.set_label('Velocity magnitude')
# show results
plt.show()
visualize_velocity(mesh,velocity)
Parameter nu: 0.006666666666666667
2) The Reduced Basis (RB) construction:
For all the methods listed below, we need a fine mesh and the generation of snapshots: We decompose the snapshots by one average over the parameters and by one fluctuation part. Then, the modes are estimated with the fluctuations.
## FINE MESH
FineMesh = skfem.MeshTri().refined(4).with_boundaries(
{
"left": lambda x: x[0] == 0,
"right": lambda x: x[0] == 1,
"down": lambda x: x[1] == 0,
"up": lambda x: x[1] == 1,
}
)
FineBasis = {variable: Basis(FineMesh, e, intorder=4)
for variable, e in element.items()} # FEM space
NumberOfNodesFineMesh = FineMesh.p.shape[1]
print("number of fine nodes: ",NumberOfNodesFineMesh)
#num_dofs_uFineMesh = basis['u'].doflocs.shape[1] # or np.shape(velocity)[0] for DOFs
number of fine nodes: 289
""" Snapshots generation"""
NumberOfSnapshots=10 #Training set
##### Create fluctuation parts for the snapshots #####
Re=1. #first Reynolds number
AveragedSnapshots=FineBasis["u"].zeros()
FineSnapshots=[]
for i in range(NumberOfSnapshots):
velocity,pressure=SolveCavityProblem(Re,FineMesh)
AveragedSnapshots+=velocity
FineSnapshots.append(velocity)
Re+=45
AveragedSnapshots/=NumberOfSnapshots
for i in range(NumberOfSnapshots):
FineSnapshots[i]-=AveragedSnapshots
#visualize_velocity(FineMesh,FineSnapshots[i])
@BilinearForm
def massVelocity(u, v, _):
return u[0] * v[0]+u[1] * v[1]
L2=massVelocity.assemble(FineBasis["u"])
Parameter nu: 1.0
Parameter nu: 0.021739130434782608
Parameter nu: 0.01098901098901099
Parameter nu: 0.007352941176470588
Parameter nu: 0.0055248618784530384
Parameter nu: 0.004424778761061947
Parameter nu: 0.0036900369003690036
Parameter nu: 0.0031645569620253164
Parameter nu: 0.002770083102493075
Parameter nu: 0.0024630541871921183
1. Snapshot Proper Orthogonal Decomposition (Snapshot-POD)
One of the most popular algorithm is called “Snapshot-POD”. See details in the paragraph “OFFLINE STAGE” on https://reducedbasis.github.io/docs/pod/.
### SNAPSHOT-POD
start_time = time.time()
NumberOfModes=6 #tol
print("number of modes: ",NumberOfModes)
# We first compute the correlation matrix C_ij = (u_i,u_j)
CorrelationMatrix = np.zeros((NumberOfSnapshots, NumberOfSnapshots))
for i, snapshot1 in enumerate(FineSnapshots):
MatVecProduct = L2.dot(snapshot1)
for j, snapshot2 in enumerate(FineSnapshots):
if i >= j:
CorrelationMatrix[i, j] = np.dot(MatVecProduct, snapshot2)
CorrelationMatrix[j, i] = CorrelationMatrix[i, j]
#print("CorrelationMatrix",CorrelationMatrix)
# Then, we compute the eigenvalues/eigenvectors of C
EigenValues, EigenVectors = np.linalg.eigh(CorrelationMatrix, UPLO="L") # C eigenVectors=eigenValues eigenVectors
idx = EigenValues.argsort()[::-1] # sort the eigenvalues
TotEigenValues = EigenValues[idx]
TotEigenVectors = EigenVectors[:, idx]
EigenValues=TotEigenValues[0:NumberOfModes] # retrieve only the first eigenvalues and associated eigenvectors
EigenVectors=TotEigenVectors[:,0:NumberOfModes]
print("eigenvalues: ",EigenValues)
RIC=1-np.sum(EigenValues)/np.sum(TotEigenValues) #must be close to 0
print("Relativ Information Content (must be close to 0):",RIC)
#RIClist=[]
#for i in range(len(EigenValues)):
# RIClist.append(1-np.sum(EigenValues[:i])/np.sum(TotEigenValues)) #must be close to 0
#project the snapshots onto the dominant eigenvectors and orthonormalize to retrieve the reduced basis
ChangeOfBasisMatrix = np.zeros((NumberOfModes,NumberOfSnapshots))
for j in range(NumberOfModes):
ChangeOfBasisMatrix[j,:] = EigenVectors[:,j]/np.sqrt(EigenValues[j])
ReducedBasis = np.dot(ChangeOfBasisMatrix,FineSnapshots)
end_time = time.time()
execution_time = end_time - start_time
print(f"Temps d'exécution : {execution_time:.6f} secondes")
# orthogonality test:
#for i in range(NumberOfModes):
# MatVecProduct = L2.dot(ReducedBasis[i])
# for j in range(NumberOfModes):
# test = np.dot(MatVecProduct, ReducedBasis[j])
# print("i,j (",i,j,"): ",test)
number of modes: 6
eigenvalues: [2.26782714e-02 2.92187702e-03 2.23860208e-04 1.86248477e-05
2.17765951e-06 1.26997357e-07]
Relativ Information Content (must be close to 0): 1.9637265658012382e-07
Temps d'exécution : 0.020321 secondes
print("-----------------------------------")
print(" Reduced basis accuracy ")
print("-----------------------------------")
### Offline Errors (H^1_0 and L2 norm)
L2compressionErrors=[]
H10compressionErrors=[]
H10=vector_laplace.assemble(FineBasis['u'],nu=1)
for snap in FineSnapshots:
ExactSolution =snap
CompressedSolutionU= ExactSolution@(L2@ReducedBasis.transpose()) #snapshot compression
ReconstructedCompressedSolution = np.dot(CompressedSolutionU, ReducedBasis)
norml2ExactSolution=np.sqrt(ExactSolution@(L2@ExactSolution))
normh1ExactSolution=np.sqrt(ExactSolution@(H10@ExactSolution))
t=np.abs(ReconstructedCompressedSolution-ExactSolution)
if norml2ExactSolution !=0 and normh1ExactSolution != 0:
relL2Error=np.sqrt(t@L2@t)/norml2ExactSolution
relH10Error=np.sqrt(t@H10@t)/normh1ExactSolution
else:
relL2Error = np.sqrt(t@L2@t) #np.linalg.norm(ReconstructedCompressedSolution-ExactSolution)
relH10Error=np.sqrt(t@H10@t)
L2compressionErrors.append(relL2Error)
H10compressionErrors.append(relH10Error)
print("L2 compression error =", L2compressionErrors)
print("H1 compression error =", H10compressionErrors)
-----------------------------------
Reduced basis accuracy
-----------------------------------
L2 compression error = [1.3815241858207787e-05, 0.00010641993810965995, 0.0004383338831715788, 0.0012111542561164227, 0.001562010925688369, 0.000402636712347126, 0.0008616253925892823, 0.0001517154231303115, 0.000608298618732441, 0.0002466646884607357]
H1 compression error = [1.939956772653135e-05, 0.00014998512464928755, 0.0006436539912057455, 0.0018634474193047483, 0.0024692938629231388, 0.0006456797464323044, 0.0012552738118769562, 0.00023166001504574293, 0.0008375179988110922, 0.0003313113363450415]
cost
If the matrix L2 is dense, then the cost of the correlation matrix computation is in $O(\mathcal{N}_h^2\ Ntrain^2)$ flops ($O(\mathcal{N}_h\ Ntrain^2)$ flops for a sparse L2 matrix), where $\mathcal{N}_h$ is the number of degrees of freedom of one snapshot and $Ntrain$ is the number of snapshots (L2.dot(snapshot1) is done in $O(\mathcal{N}_h^2$ within two imbricated forloops on the number of snapshots). Then, the eigenproblem of the correlation matrix $C$ is solved in $O (\mathcal{Ntrain^3})$ flops.
2. Greedy algorithm
A greedy algorithm is a procedure which aims at approximating each element of a compact set (here the manifold $S_h=Span\{u_h^0, \dots,u_h^n, \}$) in a Hilbert space $V_h$ by a subspace of properly selected elements of this compact set. The greedy procedure is a fast way to compute the modes by choosing some suitable parameters with respect to a criterion. At each Greedy iteration, the new RB parameter is chosen such that the corresponding snapshot is the worse approached by the previous reduced space. The projection of a solution onto the reduced basis is given by $P^n(u)=\underset{i=1}{\overset{n}{\sum}} (u,\Phi_i)\Phi_i$.
During the greedy algorithm, we first set $\Phi_0:=\frac{u_h^0}{\|u_h^0\|}$ (or any snapshots in the training set).
Then, we look for another snapshot $u_h^k$ in the training set that maximizes the error between itself and its projection onto the reduced basis, built from the first snapshot: $\frac{\|u_h^k - P^0(u_h^k) \|}{\|u_h^k\|}$, and we set $\Phi_1= \frac{u_h^k - P^0(u_h^k)}{\|u_h^k - P^0(u_h^k)\|}$.
We iterate until reaching a tolerance threshold on this error maximization, ensuring that any subsequent snapshot projection will result in a smaller error.
start_time = time.time()
ReducedBasis=np.zeros((NumberOfModes,np.shape(velocity)[0]))
SnapshotNorm=np.sqrt(np.dot(FineSnapshots[0],L2.dot(FineSnapshots[0])))
ReducedBasis[0,:]=FineSnapshots[0]/SnapshotNorm #first (random) mode
ListReducedOrderBasis=[ReducedBasis[0,:]]
ListeIndex=[0] #first snapshot
MatrixBasisProduct=[L2.dot(ListReducedOrderBasis[0])]
for n in range(1,NumberOfModes):
TestVector=dict() # dictionnary: to find the worst error between the snapshots and their projection on previous RB
for j in range(NumberOfSnapshots):
if not (j in ListeIndex): #if index not already in the RB
#w= u_j - sum_k (u_j,Phi_k) Phi_k
w=FineSnapshots[j]-sum((bk*np.dot(MatrixBasisProduct[k],FineSnapshots[j]) for k,bk in enumerate(ListReducedOrderBasis)))#,axis=0)#potential vector to add in the reduced basis
NormL2W=np.sqrt(np.dot((L2.dot(w)),w))
if np.sqrt(np.dot(FineSnapshots[j],L2.dot(FineSnapshots[j]))) > 1e-10:
GreedyMaximumTest=NormL2W/np.sqrt(np.dot(FineSnapshots[j],L2.dot(FineSnapshots[j]))) #we seek the max
else:
GreedyMaximumTest=NormL2W #we seek the max
TestVector[j]=[GreedyMaximumTest,w,NormL2W]
Index=max(TestVector, key = lambda k: TestVector[k][0]) #index of the snapshot used
ListeIndex.append(Index) #adding the corresponding j in the list
ListReducedOrderBasis.append(TestVector[Index][1]/TestVector[Index][2]) #orthonormalization in L2
MatrixBasisProduct.append(L2.dot(ListReducedOrderBasis[n]))
ReducedBasis[n,:]=ListReducedOrderBasis[-1]
end_time = time.time()
execution_time = end_time - start_time
print(f"Temps d'exécution : {execution_time:.6f} secondes")
Temps d'exécution : 0.007447 secondes
print("-----------------------------------")
print(" Reduced basis accuracy ")
print("-----------------------------------")
### Offline Errors (H^1_0 and L2 norm)
L2compressionErrors=[]
H10compressionErrors=[]
H10=vector_laplace.assemble(FineBasis['u'],nu=1)
for snap in FineSnapshots:
ExactSolution =snap
CompressedSolutionU= ExactSolution@(L2@ReducedBasis.transpose()) #snapshot compression
ReconstructedCompressedSolution = np.dot(CompressedSolutionU, ReducedBasis)
norml2ExactSolution=np.sqrt(ExactSolution@(L2@ExactSolution))
normh1ExactSolution=np.sqrt(ExactSolution@(H10@ExactSolution))
t=np.abs(ReconstructedCompressedSolution-ExactSolution)
if norml2ExactSolution !=0 and normh1ExactSolution != 0:
relL2Error=np.sqrt(t@L2@t)/norml2ExactSolution
relH10Error=np.sqrt(t@H10@t)/normh1ExactSolution
else:
relL2Error = np.sqrt(t@L2@t) #np.linalg.norm(ReconstructedCompressedSolution-ExactSolution)
relH10Error=np.sqrt(t@H10@t)
L2compressionErrors.append(relL2Error)
H10compressionErrors.append(relH10Error)
print("L2 compression error =", L2compressionErrors)
print("H1 compression error =", H10compressionErrors)
-----------------------------------
Reduced basis accuracy
-----------------------------------
L2 compression error = [5.529786242990977e-15, 2.0540757465097742e-14, 0.004569484380782256, 9.279618605250094e-15, 1.9543010683101427e-14, 2.121598047069365e-14, 0.0017752632415230997, 0.0020589462893975245, 0.0012227664193758903, 1.5092299465667746e-14]
H1 compression error = [7.466170361331867e-15, 2.612819937191255e-14, 0.006316823621511566, 1.3728021953919329e-14, 2.8581942857475144e-14, 2.9972234706180816e-14, 0.0024665199322780984, 0.0027363713296409435, 0.001581469755596689, 1.9234340294589924e-14]
cost
If the matrix L2 is dense, then the total cost is in $O(N \ \mathcal{N}_h^2\ Ntrain)$ flops ($O(N \ \mathcal{N}_h \ Ntrain)$ for a sparse matrix), where $\mathcal{N}_h$ is the number of degrees of freedom of one snapshot, $Ntrain$ is the number of snapshots and $N$ the number of modes.
Indeed, MatrixBasisProduct is computed in $O(\mathcal{N}_h^2)$ flops for a dense matrix. We then have two imbricated forloops (in $O(N \ Ntrain)$): The computation of $w$ is in $O(\mathcal{N}_h N)$ and its norm is in $O(\mathcal{N}_h^2)$ flops.
This cost is significantly lowered using a posteriori error estimates.
3. rPOD (random POD)
see details in the last section below
""" rSVD on the correlation matrix """
start_time = time.time()
NumberOfModes=6 #tol
print("number of modes: ",NumberOfModes)
# C=U Sigma VT
# see detailed algorithm steps below (section 4)
U, Sigma, VT = randomized_svd(CorrelationMatrix,
n_oversamples=10, #5 or 10 is better
n_components=NumberOfModes,
n_iter=5, # power iteration
#power_iteration_normalizer="none", # or QR
random_state=42) # Répétabilité
EigenValues=TotEigenValues
EigenVectors=VT
print("Eigenvalues: ", EigenValues)
#print(EigenVectors.shape)
RIClist=[]
for i in range(len(EigenValues)):
RIClist.append(1-np.sum(EigenValues[:i])/np.sum(Sigma)) #must be close to 0
print("RIC: (",i,")", RIClist[i])
## same steps as in Snapshot-POD
ChangeOfBasisMatrix = np.zeros((NumberOfModes,NumberOfSnapshots))
for j in range(NumberOfModes):
ChangeOfBasisMatrix[j,:] = EigenVectors[j,:]/np.sqrt(EigenValues[j])
ReducedBasis = np.dot(ChangeOfBasisMatrix,FineSnapshots)
#visualize_velocity(mesh,ReducedBasis[2])
end_time = time.time()
execution_time = end_time - start_time
print(f"Temps d'exécution : {execution_time:.6f} secondes")
number of modes: 6
Eigenvalues: [ 2.26782714e-02 2.92187702e-03 2.23860208e-04 1.86248477e-05
2.17765951e-06 1.26997357e-07 4.93353135e-09 1.40613247e-10
1.09557252e-12 -9.61608314e-19]
RIC: ( 0 ) 1.0
RIC: ( 1 ) 0.12252560668312185
RIC: ( 2 ) 0.009471476038941606
RIC: ( 3 ) 0.0008098105883218576
RIC: ( 4 ) 8.917246601403139e-05
RIC: ( 5 ) 4.913819319996016e-06
RIC: ( 6 ) -4.440892098500626e-16
RIC: ( 7 ) -1.9088965608204944e-07
RIC: ( 8 ) -1.9633030556853726e-07
RIC: ( 9 ) -1.9637269565997428e-07
Temps d'exécution : 0.003512 secondes
Now we can check for our reduced basis accuracy.
print("-----------------------------------")
print(" Reduced basis accuracy ")
print("-----------------------------------")
### Offline Errors (H^1_0 and L2 norm)
L2compressionErrors=[]
H10compressionErrors=[]
H10=vector_laplace.assemble(FineBasis['u'],nu=1)
for snap in FineSnapshots:
ExactSolution =snap
CompressedSolutionU= ExactSolution@(L2@ReducedBasis.transpose()) #snapshot compression
ReconstructedCompressedSolution = np.dot(CompressedSolutionU, ReducedBasis)
norml2ExactSolution=np.sqrt(ExactSolution@(L2@ExactSolution))
normh1ExactSolution=np.sqrt(ExactSolution@(H10@ExactSolution))
t=np.abs(ReconstructedCompressedSolution-ExactSolution)
if norml2ExactSolution !=0 and normh1ExactSolution != 0:
relL2Error=np.sqrt(t@L2@t)/norml2ExactSolution
relH10Error=np.sqrt(t@H10@t)/normh1ExactSolution
else:
relL2Error = np.sqrt(t@L2@t) #np.linalg.norm(ReconstructedCompressedSolution-ExactSolution)
relH10Error=np.sqrt(t@H10@t)
L2compressionErrors.append(relL2Error)
H10compressionErrors.append(relH10Error)
print("L2 compression error =", L2compressionErrors)
print("H1 compression error =", H10compressionErrors)
-----------------------------------
Reduced basis accuracy
-----------------------------------
L2 compression error = [1.3815241858210751e-05, 0.00010641993810958985, 0.00043833388317143893, 0.001211154256116164, 0.0015620109256884352, 0.00040263671234692336, 0.0008616253925896097, 0.00015171542313003271, 0.0006082986187325006, 0.00024666468846097097]
H1 compression error = [1.9399567725164357e-05, 0.0001499851246557588, 0.0006436539912023722, 0.0018634474193020337, 0.0024692938629250977, 0.0006456797464365838, 0.0012552738118668722, 0.00023166001503718088, 0.000837517998819989, 0.00033131133634022204]
cost
If the matrix L2 is dense, then the cost of the correlation matrix computation is in $O(\mathcal{N}_h^2\ Ntrain^2)$ flops where $\mathcal{N}_h$ is the number of degrees of freedom of one snapshot and $Ntrain$ is the number of snapshots.
Then, the dominant cost in the random SVD on the correlation matrix $C$ is in $O (Ntrain^2 (N+p))$ flops (cost of the multiplication of $C \in \mathbb{R}^{Ntrain \times Ntrain}$ by a gaussian matrix $\Omega \in \mathbb{R}^{Ntrain \times (N+p)}$).
4. Truncated SVD
SVD and POD are very close algorithms:
The singular value decomposition (SVD) is widely used in low-rank approximation. It consists in factorizing a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ under the form $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$ where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are unitary matrices with $\Sigma = diag(\sigma_1,...,\sigma_p) \in \mathbb{R}^{m \times n}$, and $ \sigma_1 \geq \sigma_2 \geq ··· \geq \sigma_p \geq 0$, with $p = $min$(m,n)$.
The $(\sigma_i)_{i=1,...,p}$ are called singular values of $\mathbf{A}$, $\mathbf{U}=[\Phi_1,\dots,\Phi_m]$ is made up of the left singular vectors of $\mathbf{A}$, whereas the elements of $\mathbf{V}=[\Psi_1,\dots,\Psi_m]$ are its right singular vectors, such that: $\mathbf{A} \Phi_i=\sigma \Psi_i$.
The rank of a diagonal matrix is equal to the number of non zero diagonal terms, and rank($\mathbf{A}$)=rank($\Sigma$), such that if $\mathbf{A}$ has $r$ positive singular values, then rank($\mathbf{A}$) = $r$. We deduce that $\mathbf{A}$ can be written as the following sum:
$\mathbf{A} = \sum_{i=1}^r \sigma_i \Phi_i \Psi_i^T$.
In the POD, $\mathbf{A}^T \mathbf{A}$ is the correlation matrix and we use the fact that $\mathbf{A}^T \mathbf{A}= \mathbf{V} \Sigma^T \Sigma \mathbf{V}^T$.
## SVD on the snapshots
start_time = time.time()
print(np.array(FineSnapshots).transpose().shape)
U, Sigma, VT = np.linalg.svd(np.array(FineSnapshots).transpose(), full_matrices=False)
# Select the first modes
ReducedBasis = U[:, :NumberOfModes] # R^(Ndof x NumberOfModes)
# Eigenvalues
EigenValues = Sigma[:NumberOfModes] ** 2
print("SVD Orthogonality:")
print(ReducedBasis.T @ ReducedBasis)
# RIC
RIC = 1 - np.sum(EigenValues) / np.sum(Sigma ** 2)
print("Relative Information Content (must be close to 0):", RIC)
end_time = time.time()
execution_time = end_time - start_time
print(f"Temps d'exécution : {execution_time:.6f} secondes")
(2178, 10)
SVD Orthogonality:
[[ 1.00000000e+00 1.50920942e-16 7.45931095e-17 1.56125113e-17
-9.97465999e-18 4.16333634e-17]
[ 1.50920942e-16 1.00000000e+00 1.25767452e-16 5.20417043e-17
3.81639165e-17 2.42861287e-17]
[ 7.45931095e-17 1.25767452e-16 1.00000000e+00 3.66026653e-16
3.81639165e-17 -3.88686479e-17]
[ 1.56125113e-17 5.20417043e-17 3.66026653e-16 1.00000000e+00
-2.18575158e-16 -4.85722573e-17]
[-9.97465999e-18 3.81639165e-17 3.81639165e-17 -2.18575158e-16
1.00000000e+00 3.20923843e-17]
[ 4.16333634e-17 2.42861287e-17 -3.88686479e-17 -4.85722573e-17
3.20923843e-17 1.00000000e+00]]
Relative Information Content (must be close to 0): 2.0033294889643116e-07
Temps d'exécution : 0.003572 secondes
print("-----------------------------------")
print(" Reduced basis accuracy ")
print("-----------------------------------")
### Offline Errors (H^1_0 and L2 norm)
L2compressionErrors=[]
H10compressionErrors=[]
H10=vector_laplace.assemble(FineBasis['u'],nu=1)
for snap in FineSnapshots:
ExactSolution =snap
CompressedSolutionU= ReducedBasis.transpose()@ExactSolution #snapshot compression
ReconstructedCompressedSolution = np.dot(CompressedSolutionU, ReducedBasis.transpose())
norml2ExactSolution=np.sqrt(ExactSolution@(L2@ExactSolution))
normh1ExactSolution=np.sqrt(ExactSolution@(H10@ExactSolution))
t=np.abs(ReconstructedCompressedSolution-ExactSolution)
if norml2ExactSolution !=0 and normh1ExactSolution != 0:
relL2Error=np.sqrt(t@L2@t)/norml2ExactSolution
relH10Error=np.sqrt(t@H10@t)/normh1ExactSolution
else:
relL2Error = np.sqrt(t@L2@t) #np.linalg.norm(ReconstructedCompressedSolution-ExactSolution)
relH10Error=np.sqrt(t@H10@t)
L2compressionErrors.append(relL2Error)
H10compressionErrors.append(relH10Error)
print("L2 compression error =", L2compressionErrors)
print("H1 compression error =", H10compressionErrors)
-----------------------------------
Reduced basis accuracy
-----------------------------------
L2 compression error = [1.3839653232122614e-05, 0.00010655139750967699, 0.00043876659941552253, 0.0012119568854371354, 0.0015619237548005866, 0.0004033969722890684, 0.0008613698384691759, 0.00015201310598890686, 0.0006078993200356156, 0.0002463245710069301]
H1 compression error = [1.941939702097461e-05, 0.00015005819467710422, 0.0006437531425080919, 0.0018633145654439185, 0.002466401029440625, 0.0006467412928887584, 0.001254080490147989, 0.00023202553425037264, 0.0008359907910302726, 0.0003306576959726763]
cost
The dominant cost in the SVD on the snapshot matrix $A$ is in $O (N_h \times Ntrain^2)$ flops.
5. Random SVD (rSVD)
## rSVD on the snapshots
start_time=time.time()
U, Sigma, VT = randomized_svd(np.array(FineSnapshots).transpose(),
n_components=NumberOfModes,
n_iter=5,
random_state=42)
ReducedBasis = U[:, :NumberOfModes] # (Ndof x NumberOfModes)
EigenValues = Sigma[:NumberOfModes] ** 2
print("rSVD Orthogonality:")
print(ReducedBasis.T @ ReducedBasis) # Devrait être ≈ Identité
end_time = time.time()
execution_time = end_time - start_time
print(f"Temps d'exécution : {execution_time:.6f} secondes")
rSVD Orthogonality:
[[ 1.00000000e+00 -1.21430643e-17 -9.02056208e-17 -3.29597460e-17
-3.51281504e-17 -3.81639165e-17]
[-1.21430643e-17 1.00000000e+00 -9.02056208e-17 1.04083409e-17
-5.89805982e-17 6.59194921e-17]
[-9.02056208e-17 -9.02056208e-17 1.00000000e+00 1.26634814e-16
6.93889390e-18 1.75098651e-17]
[-3.29597460e-17 1.04083409e-17 1.26634814e-16 1.00000000e+00
0.00000000e+00 -6.67868538e-17]
[-3.51281504e-17 -5.89805982e-17 6.93889390e-18 0.00000000e+00
1.00000000e+00 6.15826834e-17]
[-3.81639165e-17 6.59194921e-17 1.75098651e-17 -6.67868538e-17
6.15826834e-17 1.00000000e+00]]
Temps d'exécution : 0.009150 secondes
print("-----------------------------------")
print(" Reduced basis accuracy ")
print("-----------------------------------")
### Offline Errors (H^1_0 and L2 norm)
L2compressionErrors=[]
H10compressionErrors=[]
H10=vector_laplace.assemble(FineBasis['u'],nu=1)
for snap in FineSnapshots:
ExactSolution =snap
CompressedSolutionU= ReducedBasis.transpose()@ExactSolution #snapshot compression
ReconstructedCompressedSolution = np.dot(CompressedSolutionU, ReducedBasis.transpose())
norml2ExactSolution=np.sqrt(ExactSolution@(L2@ExactSolution))
normh1ExactSolution=np.sqrt(ExactSolution@(H10@ExactSolution))
t=np.abs(ReconstructedCompressedSolution-ExactSolution)
if norml2ExactSolution !=0 and normh1ExactSolution != 0:
relL2Error=np.sqrt(t@L2@t)/norml2ExactSolution
relH10Error=np.sqrt(t@H10@t)/normh1ExactSolution
else:
relL2Error = np.sqrt(t@L2@t) #np.linalg.norm(ReconstructedCompressedSolution-ExactSolution)
relH10Error=np.sqrt(t@H10@t)
L2compressionErrors.append(relL2Error)
H10compressionErrors.append(relH10Error)
print("L2 compression error =", L2compressionErrors)
print("H1 compression error =", H10compressionErrors)
-----------------------------------
Reduced basis accuracy
-----------------------------------
L2 compression error = [1.3839653232129974e-05, 0.00010655139750966657, 0.00043876659941556253, 0.001211956885437101, 0.0015619237548005456, 0.0004033969722890735, 0.0008613698384691697, 0.00015201310598888105, 0.0006078993200356165, 0.0002463245710069679]
H1 compression error = [1.941939702088054e-05, 0.00015005819467713285, 0.00064375314250792, 0.001863314565444008, 0.00246640102944091, 0.0006467412928888026, 0.0012540804901480403, 0.00023202553425050946, 0.0008359907910302515, 0.00033065769597253166]
## DETAILS on rSVD:
start_time=time.time()
# if q is small (1 or 2) no power_iteration_normalizer is required but otherwise add QR decomposition at each step (or LU...)
## rSVD on the snapshots
S=np.array(FineSnapshots).transpose()
rng = np.random.default_rng(42) # for reproductibility purposes
Omega = rng.standard_normal(size=(NumberOfSnapshots, NumberOfModes)) # random matrix #coud also add oversamples
# First we project the snapshots on a smaller random space of size Nt*N
# Step 1 : random projection
#Y = (S@S.T)@(S@S.T)@S@ Omega
# or with Power iterations to enhance the precision of the approximation of dominant singular vectors (with orthonormalization at each step).
q=5
Y=S@Omega #init
for i in range(q):
Y = S @ (S.T @ Y) # Itérations de puissance
if q>2:
Q, _ = np.linalg.qr(Y) # QR Orthonormalization
Y = Q
# Step 2 : Orthonormalization (QR)
Q, _ = np.linalg.qr(Y) # (m, k) #S=Q Q^T S
# Step 3 : Reduced projection
B = Q.T @ S # (k, N)
# Step 4 : SVD on B
U_tilde, S, VT = np.linalg.svd(B, full_matrices=False)
ReducedBasis=Q@U_tilde
end_time = time.time()
execution_time = end_time - start_time
print(f"Temps d'exécution : {execution_time:.6f} secondes")
Temps d'exécution : 0.003637 secondes
print("-----------------------------------")
print(" Reduced basis accuracy ")
print("-----------------------------------")
### Offline Errors (H^1_0 and L2 norm)
L2compressionErrors=[]
H10compressionErrors=[]
H10=vector_laplace.assemble(FineBasis['u'],nu=1)
for snap in FineSnapshots:
ExactSolution =snap
CompressedSolutionU= ReducedBasis.transpose()@ExactSolution #snapshot compression
ReconstructedCompressedSolution = np.dot(CompressedSolutionU, ReducedBasis.transpose())
norml2ExactSolution=np.sqrt(ExactSolution@(L2@ExactSolution))
normh1ExactSolution=np.sqrt(ExactSolution@(H10@ExactSolution))
t=np.abs(ReconstructedCompressedSolution-ExactSolution)
if norml2ExactSolution !=0 and normh1ExactSolution != 0:
relL2Error=np.sqrt(t@L2@t)/norml2ExactSolution
relH10Error=np.sqrt(t@H10@t)/normh1ExactSolution
else:
relL2Error = np.sqrt(t@L2@t) #np.linalg.norm(ReconstructedCompressedSolution-ExactSolution)
relH10Error=np.sqrt(t@H10@t)
L2compressionErrors.append(relL2Error)
H10compressionErrors.append(relH10Error)
print("L2 compression error =", L2compressionErrors)
print("H1 compression error =", H10compressionErrors)
-----------------------------------
Reduced basis accuracy
-----------------------------------
L2 compression error = [1.3839650641800041e-05, 0.00010655138025831539, 0.00043876654776895215, 0.0012119568161507801, 0.0015619237983524252, 0.00040339690992188625, 0.0008613698745842613, 0.00015201308612810389, 0.0006078993568913044, 0.0002463245965823324]
H1 compression error = [1.9419393408006165e-05, 0.0001500581703820479, 0.0006437530670056677, 0.0018633144607903833, 0.002466401103775472, 0.0006467412024139285, 0.0012540805465273642, 0.00023202550603323933, 0.0008359908438539881, 0.0003306577308801652]
cost
The dominant cost in the random SVD on the snapshot matrix $A$ is in $O (N \times Ntrain^2)$ flops.